If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2=4761
We move all terms to the left:
n^2-(4761)=0
a = 1; b = 0; c = -4761;
Δ = b2-4ac
Δ = 02-4·1·(-4761)
Δ = 19044
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{19044}=138$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-138}{2*1}=\frac{-138}{2} =-69 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+138}{2*1}=\frac{138}{2} =69 $
| b-10=b-10 | | 2c-8/3=2 | | 3x+28=3x+10 | | 8x+7x-3x= | | 129-v=217 | | 2(3x4)=6x+8 | | J+3/4=j/7 | | 23x^2=31 | | 48/40x-28/40=51/40 | | 3-7(0.5)=7+x | | -4x+7(-2x+2)=122 | | -14x-12=54 | | -6x+5(3x+13)=-25 | | m/6-31/6-4m/7-36/7=2 | | 0x=36 | | -4x+3(-7x-8)=176 | | 4/3c*2=2 | | 7x-4x=8 | | m-31/6-4m-36/7=2 | | -3x+6(-x+22)=51 | | 15m-25=9m¥17 | | -6x+3(4x-8)=48 | | 15=9+.75n | | 1.2x+1=0.8x+3.4 | | 9x^2−8=−34x | | 208=134-w | | 255=177-y | | -2(-5f-8)=10f-8 | | -2(-5f-8)=10f-88 | | 3/7a=-8 | | 12x-17=-10x+17 | | 3y=153 |